



Narrandera Shire Council

Engineering Guidelines for Subdivisions and Development Standards

Part 5 - Sewerage Reticulation

February 2011

Contents

1.	Intro	duction	1
2.	Gen	eral	2
	2.1	Scope (refer WSA 1.1)	2
3.	Syst	em Planning (refer WSA 2)	3
	3.1	Assessment of future loads (refer WSA 2.3.2)	3
4.	Flow	Estimation (refer WSA 3)	4
	4.1	Design Flow Estimation Method (refer WSA 3.2)	4
5.	Deta	uil Design	5
	5.1	Detail Design Considerations (refer WSA 4.2)	5
	5.2	Horizontal Alignment of Sewers (refer WSA 4.3)	5
	5.3	Obstructions and Clearances (refer WSA 4.4)	6
	5.4	Pipe Sizing and Grading (refer WSA 4.5)	6
6.	Prop	perty Connection (refer WSA 5)	8
	6.1	Limitation of Connection to Sewers (refer WSA 5.2)	8
	6.2	Methods of Property Connection (refer WSA 5.3.1)	8
	6.3	Location Of Connection Points (refer WSA 5.6.)	8
	6.4	Y Property Connections (refer WSA 5.7)	8
7.	Mair	ntenance Structures (refer WSA 6)	9
	7.1	Types of Maintenance Structures, (refer WSA 6.1)	9
	7.2	Spacing of Maintenance Structures (refer WSA 6.3)	9
	7.3	Maintenance Holes (refer WSA 6.6)	9
	7.4	Maintenance Shafts (MS). (refer WSA 6.7)	9
8.	Anci	llary Structures (refer WSA 7)	10
	8.1	Water Seals, Boundary Traps and Water Sealed MH's (refer WSA 7.2)	10
	8.2	Gas check MH's (refer WSA 7.3)	10
	8.3	Inverted Syphons (refer WSA 7.8)	10
9.	Stru	ctural Design <i>(refer WSA 8)</i>	11
	9.1	Products and Materials (refer WSA 8.2)	11

10. Standard of	drawings	12
Table Index		
Table 1	Valves of Colebrook White roughness	7
Table 2	Property sewers Narrandera	7
Table 3	Methods of Property Connection Narrandera	8
Table 4	Approved materials for use Narrandera	11
Table 5	Authority Standard Drawings Narrandera	12

Appendices

A Sewer Capacity Grading Table

1. Introduction

This Part of The Authority's "Engineering Guidelines for Subdivisions and Developments" is related to sewerage reticulation. Reference to the Authority will include reference to the Council as the Sewerage Authority.

The Design and Construction of sewerage reticulation shall generally be in accordance with the latest version of the Water Services Association of Australia (WSAA) "Sewerage Code of Australia (WSAO2)".

However this part of The Authority's "Engineering Guidelines" takes precedence over the WSAA Standards. (i.e. these are The Authority's requirements which may be different to WSA 02).

The other Parts of the engineering Guidelines for Subdivisions and Development are as follows:

Part 1	General Requirements
Part 2	Guidelines for Design of Roads
Part 3	Guidelines for Design of Drainage
Part 4	Guidelines for Design of Water Reticulation
Part 5	Guidelines for Design of Sewerage Reticulation
Part 5 Part 6	Guidelines for Design of Sewerage Reticulation Guidelines for Landscaping and Measures for Erosion, Sedimentation and Pollution Control

This part of the "Engineering Guidelines" is set out in the same order as WSA 02 for ease of cross-referencing.

2. General

2.1 Scope (refer WSA 1.1)

The design of sewage pumping stations (SPSs) is addressed in WSA 04 2001 Sewage Pumping Station Code of Australia. The Authority has an objective of minimising the number of pump stations to reduce ongoing maintenance costs and liabilities. Pump station and rising main shall be in accordance with the Authority Standards. These standards encourage a consistent approach to telemetry, electrical, pumps and maintenance issues throughout the system.

The authority may give consideration to the installation of pressure sewer systems subject to Authority approval on a case by case basis. Consistency will be required with electrical and mechanical components of equipment across the Authority municipal area to minimize ongoing maintenance liabilities to the Authority. Pressurised systems are more likely to be considered in sparsely developed and industrial areas where low flows are generated.

This Part of The Authority's "Engineering Guidelines for Subdivisions and Developments" is related to sewer reticulation. Reference to the Authority will include reference to the Council as the Water Authority.

Pressure systems may be used subject to Council approval.

- 3. System Planning (refer WSA 2)
- 3.1 Assessment of future loads (refer WSA 2.3.2)

4. Flow Estimation (refer WSA 3)

4.1 **Design Flow Estimation Method** (refer WSA 3.2)

Flow estimation assumptions shall be given in the concept plan.

4.1.1 Traditional Design Flow Estimation Method (refer WSA 3.2.2)

The method for determining the design flow shall be in accordance with the methodology specified by the water agency as follows.

Detail Design

5.1 Detail Design Considerations (refer WSA 4.2)

5.1.1 Catchment Design (refer WSA 4.2.1)

Where future development has the potential to occur beyond the estate, the estate sewer reticulation is to be consistent with a catchment master plan. In the absence of a master plan prepared by the Authority a master plan must be prepared by the developer to an extent necessary to determine sewerage component sizing and location within the estate so that orderly development can occur.

Estate sewerage reticulation shall be extended through the estate to service future upstream catchments. Sewer extension to service the upstream catchment shall be subject to Authority approval at the cost of the Authority. Easements shall be created as part of an approved estate master plan to enable sewer construction that is not dependent and restricted by estate staging and lot release. Construction may be either directed by the Authority or alternatively constructed by the Authority or its representatives.

5.1.2 Design Accuracy (refer WSA 4.2.2)

Location in plan shall be referenced to MGA coordinates.

5.1.3 Easements (refer WSA 4.2.5)

Where Community or Shared Title occurs, The Authority's sewer responsibility ends at the property connection point (typically where the property vertical is located as visible on site / MH inside the boundary line of the property). There will be one connection to service the combined community lots. The Authority may require an easement to be created over part or the entire infrastructure. Refer also public and private property (refer WSA 4.3.4).

5.2 Horizontal Alignment of Sewers (refer WSA 4.3)

Road Crossings are perpendicular to the road centreline unless otherwise approved.

5.2.1 Public and Private Property (refer WSA 4.3.4)

Sewers located in property other than owned by The Authority are to have an easement in favour of The Authority. The Developer is responsible for obtaining this easement; the release of the Deposited Plan of Subdivision is subject to the creation of this easement. The Developer is to transfer to The Authority sewer easements provided in the subdivision and execute a transfer and grant of easement in favour of The Authority pursuant to Section 88b of the Conveyancing Act 1919, as amended. The minimum width of sewer easement should be 3.0 metres.

Development that requires the submission of a development application to the Authority for approval will require the provision of an easement over existing sewer infrastructure.

5.2.2 All changes in direction using MH (refer WSA 4.3.5)

An internal MH through drop between inlet pipe and outlet pipe is required as detailed in Table 1:

Table 1 Deflection Angles

Deflection Angle	Drop (mm)
0° to 45°	30
46° to 90°	50
91° to 120°	100

Deflections between 91° to 120° are by approval only. Deflections greater than 120° through Maintenance Holes are not permitted.

5.2.3 Horizontal Curves in Sewers (refer WSA 4.3.7)

Typically not accepted but the corporation may approve curved sewers on a case-by-case basis.

5.3 Obstructions and Clearances (refer WSA 4.4)

Sewer mains located within lots adjacent to stormwater drainage lines shall be a minimum of 750 mm clear of the stormwater pipe.

The Authority has a preference that buildings not be located over sewer mains. Where this is unavoidable subject to approval of the Authority, buildings may be constructed over sewer reticulation mains provided they are constructed so that no load from the structure is transmitted to the sewer main and the portion of the main under the building (and for a distance outside of the building shall be 2 metres minimum) is laid in unlined cast iron or ductile iron pipe equivalent to Class PN 35. Refer to standard drawing. Class 18 uPvc DIOD (ductile iron outside diameter compatible). This concession is made primarily for buildings in established areas and will not be extended to new subdivisions unless special circumstances prevail.

5.4 Pipe Sizing and Grading (refer WSA 4.5)

5.4.1 General (refer WSA 4.5.1)

Sewers shall be designed for PWWF capacity. The maximum and minimum allowable loadings for various pipe diameters are as shown in Appendix of these standards.

5.4.2 Minimum pipe sizes for maintenance purposes (refer WSA 4.5.4)

The minimum sewer main diameter is 150 mm.

5.4.3 Minimum grades for sewers (refer WSA 4.5.7)

At the ends of lines the minimum grade is 1 in 80.

5.4.4 Minimum grades for self cleansing (refer WSA 4.5.7)

The maximum grade of reticulation sewer is limited to 1 in 10.

The minimum grades are shown in a table attached in Appendix A.

The values of Colebrook White roughness to be used in the design of gravity sewers are detailed in Table 2:

Table 2 Valves of Colebrook White roughness

Nominal Pipe Size (mm)	Full Flow - for estimation of Peak Hydraulic Capacity	Partial Flow - for estimation of Self- Cleansing Flows		
150-300	k = 0.6 mm	k = 1.5 normal		
		k = 3.0 for control lines		
375-600	k = 0.6 mm	k = 3.0 mm		
Above 600	k = 1.5 mm	k = 6.0 mm		

Note: Control Lines are those lines that affect the overall depth of the system.

Minimum grades for property sewers is 1 in 60.

5.4.5 Minimum Cover over sewers (refer WSA 4.6.3)

In accordance with WSA.

5.4.6 Minimum Depth of Sewer Connection Point (refer WSA 4.6.5)

The depth of the junction is to be such that any location within the lot can be drained to it via a pipe with a minimum 300 mm of cover laid at a grade of 1 in 60. The pipe is to be located parallel to boundaries and account for raft slab construction.

5.4.7 **Depth of Connection Point** (refer WSA 4.6.5.4)

Refer to Table 3 for specific details for Narrandera sewers.

Table 3 Property sewers Narrandera

Maximum depth to invert	2.0 metres
Termination of sewers that provide for future connection	Mark with tape and marker post

5.4.8 Vertical Curves (refer WSA 4.6.7)

Not accepted.

5.4.9 Compound Curves (refer WSA 4.6.8)

Not accepted.

6. Property Connection (refer WSA 5)

6.1 Limitation of Connection to Sewers (refer WSA 5.2)

Written approval is required from the Authority for connection to the existing Authority sewerage system. All work is to be carried out by Authority approved contractors at the developers' expense. Seven days prior notice is required. All materials are to be supplied by the Developer.

All work conducted on live sewers is to be in accordance with the relevant Occupational Health and Safety Regulations and Confined Spaces Regulations.

6.2 Methods of Property Connection (refer WSA 5.3.1)

Refer to Table 4 for specific details for Narrandera property connections.

Table 4 Methods of Property Connection Narrandera

WSA 5.3.3 Buried interface method (type A)	Approved
WSA 5.3.2 IO interface method	Not approved
Reference	WSA standard drawing WAT 1107

6.3 Location Of Connection Points (refer WSA 5.6.)

Where an unsewered dwelling is located on land that is being developed, the Developer shall connect the dwelling to the sewerage reticulation at his cost as part of the subdivision work. The Developer shall be responsible for the removal of any septic tanks and backfilling of the excavation to the satisfaction of Council. All new sewer mains and maintenance holes (MH) must be tested prior to the dwelling being connected.

6.4 Y Property Connections (refer WSA 5.7)

Not accepted.

7. Maintenance Structures (refer WSA 6)

7.1 Types of Maintenance Structures, (refer WSA 6.1)

a) Maintenance Holes accepted.

b) Maintenance Shafts not accepted

c) Termination Maintenance Shafts subject to authority approval on a case by case basis

7.2 Spacing of Maintenance Structures (refer WSA 6.3)

MH maximum spacing is 80 metres.

7.3 Maintenance Holes (refer WSA 6.6)

All maintenance structures shall be maintenance holes unless otherwise approved by the Authority.

Maintenance holes (MH) are required at all dead ends exceeding 30 metres in length. Sewer mains (referred to as junction and lead) that exceed 10 metres in length are sidelines that require a MH with a 150 mm connection where they enter the main at the downstream end. MHs are not to be located in road carriageways without specific approval of the Authority.

Where the development is utilising existing sewer mains or junctions, the mains, MHs or junctions must be upgraded to meet the current guideline requirements.

7.3.1 Types of MH construction (refer WSA 6.6.2)

Cast insitu or precast units are to be as approved by the Authority. Straight back tapers are not permitted on cast in-situ maintenance holes.

PE and other plastics are not accepted.

MH are to be constructed as fully cast insitu or fully precast assemblies.

7.3.2 Ladders, Step irons and Landings. (refer WSA 6.6.8)

Not required.

7.4 Maintenance Shafts (MS). (refer WSA 6.7)

MS not accepted, TMS accepted.

8. Ancillary Structures (refer WSA 7)

- **8.1** Water Seals, Boundary Traps and Water Sealed MH's (refer WSA 7.2) Not required.
- **8.2 Gas check MH's** (refer WSA 7.3) Not required.
- 8.3 Inverted Syphons (refer WSA 7.8)

Not accepted.

9. Structural Design (refer WSA 8)

9.1 Products and Materials (refer WSA 8.2)

Reticulation Pipes and Fittings must be in accordance with the manufacturers and relevant Standards. The materials listed in Table 5 are approved for use:

Table 5 Approved materials for use Narrandera

Gravity sewer reticulation pipelines may be constructed from uPVC non pressure pipe and fittings (AS 1260) minimum class SN8.

Ductile Iron, PN35, lining type to be confirmed with the Authority. NOTE: Portland cement concrete lining is not acceptable.

DIOD uPVC.

Other materials may be considered however these materials will require approval on a case-by-case basis.

All pipes should be rubber ring jointed.

10. Standard drawings

Table 6 Authority Standard Drawings Narrandera

No.	Description	Drawing No.
1	VC Sewer Connections	Subject to development
2	uPVC Sewer Connections	
3	Sewer Connection where there is an obstruction	
	between sewer main and connection point	
4	Sewer main Replacement Details (Ductile Iron or	
5	Equivalent)	
	Sewer Main Junctions Cut-In Details	
6	Sewerage Maintenance Holes	
7	Footings in Vicinity of Sewer Mains	
8	Sewer mains in Vicinity of Swimming Pools	
9	Standard Trench Details	

Appendix A Sewer Capacity Grading Table

	Pipe size 150 Pipe size 225		size 150 Pipe size 225 Pipe size 300 Pipe siz			ize 375	5 Pipe size 450		Pipe si	ze 525	Pipe size	600						
	Tenements Tenements		nents	Tenements		Tenements		Tenements		Tenements		Tenements						
Grade	<i>Min</i> (in m		Max		<i>in</i> K mm)	Max	<i>Min</i> (in m		Max	<i>Min</i> K (in mm)	Max	Grade						
	1.5	3.0	0.6	1.5	3.0	0.6	1.5	3.0	0.6	3.0	0.6	3.0	0.6	3.0	0.6	3.0	0.6	
80 90 100	1 3 6	1 2 4	221 208 196	11	8	609												80 90 100
110 120 130	9 13 18	7 10 14	186 178 170	15 20 25	11 15 20	580 553 530	28 33	22 27	1225 1175									110 120 130
140 150 160	23 30 35	18 24 30	164 158 152	31 36 41	25 30 35	510 492 475	38 43 49	32 36 41	1129 1089 1053	39 44 49	2081 2007 1941	58	3188					140 150 160
180 200 220	48 65 89	41 56 77	143 135 128	52 66 83	45 57 71	446 422 401	61 76 92	52 65 79	989 936 890	61 75 90	1825 1727 1642	71 86 103	3000 2839 2703	98 116	4313 4104			180 200 220
250 300 350	204	176	119	11 3 18 6	97 16 1 28	374 339 312	120 184 269	105 159 234	832 755 695	117 172 242	1536 1395 1287	131 188 259	2527 2296 2118	146 207 281	3840 3492 3222	163 227 305	5511 5013 4627	250 300 350
400 450				32	3		389 577	340 507	648 608	332 448	1199 1120	347 454	1975 1855	370 475	3006 2826	396 504	4316 1060	400 450
500							1175	1039	575	602	1066	585	1757	600	2674	628	3843	500
550 600 650										809 1191	1013 967	747 953 1226	1670 1596 1531	748 926 1138	2544 2430 2331	773 940 1134	3656 3494 3351	550 600 650
700 750 800						grade to be g grade for	_			sign cansed by gra	vity flows	1630 2829	1471 1420	1400 1732 2185	2242 2162 2089	1362 1628 1948	3222 3109 3006	700 750 800
850 900 1000														2925	2024	2341 2850 5668	2926 2825 2673	850 900 1000

GHD

105 Hume Street Wodonga VIC 3690 Australia

T: 61 2 6043 8700 F: 61 2 6043 8711 E: abxmail@ghd.com.au

© GHD 2011

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Document Status

Rev	Author	Reviewer		Approved for Issue				
No.	Addioi	Name	Signature	Name	Signature	Date		
1	J Ellwood	C Elliott	lolin Whist.	C Elliott	lolin Whist.	10/2/11		